 Lecture 3

Canonical form and general solution
The homogeneous wave equation in one (spatial) dimension has the form
U, —c’, =0 —o<x<bh<o,t>0

where ceR is called the wave speed, a terminology that will be justified in the
discussion below. Using the chain rule for the function u(x, t)=w(& (X, t), n(x, t))
and then we obtained the canonical form as

—4c*w,. =0

Hence, the general solution is w(&,7) = F(&) +G(y) ,where the F,G e C?*(R)thus;

in the original variables the solution becomes;

u(x,t) = F(x+ct) + G(x —ct) (16)

In other words, if u is a solution of the one-dimensional wave equation, then
there exist two real functions F,G e C?*(R) such that (16) holds. Conversely, any
two functions F,G e C?*(R) define a solution of the wave equation via formula (16).
For a fixed t, >0, the graph of the function G(x-ct,) has the same shape as the
graph of the function G(x), except that it is shifted to the right by a distancect,.

Therefore, the function G(x-ct) represents a wave moving to the right with

velocity c, and it is called a forward wave. The function F(x + ct) is a wave
traveling to the left with the same speed, and it is called a backward wave. Indeed
c can be called the wave speed.

EX: Show that the Cauchy problem and d’Alembert’s formula
U, —Ccu, =0 —o<x<o0t>0
u(x,0) = f(x),u,(x,0)=g(x) —o<x<o0

Has the general solution u(x.t) = X+ +9(x+ct) | iI“dg(s)ols
2 2¢ Je-a
1 |x<2 1 |x<2
Ex:Ifc=3 and f(x)= i , g(x) = A then;
0 |x|>2 0 |x>2

a) Find u(O,%)

b) Discuss the large time behavior of the solution.

¢) Find the maximal value of u(x, t), and the points where this maximum is
achieved.

d) Find all the points whereu e C?.

Boundary value problem:
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A problem that cosist of finding a solution of partial differential equation,which
also satisfies one or more boundary conditions is called Boundary value
problem(BVP).

The theory of P.D.Es gives results on the existence of solutions of boundary
value problems. But such results are necessarily limited and complicated by the
great varity of features types of equations and condition and type of domains. In
physical sciences there are many type of heat equation, wave equation and
Laplace((or potential)) equation in one or more dimensions with several
coordinates for examples:

2 2
Laplace equation Vu—a—+a—:0 . = (X, y)
ox* oy
Cylindrical coordinates: (x,y,z) — (r,4,2) ( —) 3 62 62 =0, where
Zﬁr r? 8¢ 8 a?

X=rcos¢, y=rsing, z=z
Spherical coordinates:
10,,0% 1 62u 1
X, ¥,2) = (r,$,0) ——(r? +
(x.y.2) = (r.4.6) rzar( or?”  r?sin® @ 0¢° T 7sing 00
X=rsindcos¢g, y=rsindsing, z=rsind
10 o ., 0%

Cylindrical symmetry: r——( —) 0, Spherical symmetry : g(r ar—z):o,

( —)=0, where

Type of boundary conditions:
Dirichlet conditions: where u is specified at each point of a boundary of a
region
- Neumann conditions: where the values of the normal derivative of the

function % are prescribed on the boundary

- Cauchy condition:

Theorem: Fix T > 0. The above Cauchy problem in the domain-«<x<ow,0<t<T
is well-posed for f e C*(R) , g eC'(R).

Proof: The existence and uniqueness follow directly from the d’ Alembert formula.
Indeed, this formula provides us with a solution, and we have shown that any
solution of the Cauchy problem is necessarily equal to the d’ Alembert solution.
Note that from our smoothness assumption ( f e C*(R) , g €C'(R)), it follows that



ueC?(Rx(0,0))NC'(Rx(0,0)) , and therefore, the d’Alembert solution is a classical
solution. On the other hand, for f eC(R)and g that is locally integrable, the
d’ Alembert solution is a generalized solution.

It remains to prove the stability of the Cauchy problem, i.e. we need to show
that small changes in the initial conditions give rise to a small change in the
solution.

Let u; be two solutions of the Cauchy problem with initial conditions f,,g,,
where i=12.Now, if

00— f,(¥)|<5  |g,()-9,(x)|<s forall xeR,
then for all xeR and 0 <t <T we have

| f,(x+ct)— f,(x+ct)| .\ |f,(x—ct)— f,(x—ct)|
2 2

+ifxm|91(3) — g, (s)fds < L)+ Loats<@+T)s
ZC X—ct 2 2C

Ju, (%) = u, (%)) <

Therefore, for a given £>0, we take §< (1f % Then forall xeRand 0<t<T we
have u (x,t) —u,(x,t) < &,

The method of separation of variables

Fourier’s method for solving linear PDEs is based on the technique of
separation of variables. Let us outline the main steps of this technique. First we
search for solutions of the homogeneous PDE that are called product solutions (or
separatedsolutions). These solutions have the special form

u(x,t) = X(x)- T(t)

and in general they should satisfy certain additional conditions. In many
cases,these additional conditions are just homogeneous boundary conditions. It
turns out that X and T should be solutions of linear ODEs that are easily derived
from the givenPDE.

Note: Obviously, we are not interested in the zero solution u(x,t) =0. Therefore, we
seek functions X and T that do not vanish identically.

Example: Consider the following heat conduction problem in a finite interval:

t
u —ku, =0 0<x<Ilt>0

u(o,t) =u(l,t)=0 t>0 u=0 u=0
u(x,0)=f(x), 0<x<lI

=
£

"
=<V



XT, =kTX,, = L = L X -1 ,Aisseparationconstat
kT X kKT X

Since u is not the trivial solution u = 0, it follows that X(0)=X(I)=0

2
= %Xz( =-2X,0<x<l with X(@0)=X(1)=0 " called an eigenvalue
problem”
d—T =—AkT,t>0
dt

A nontrivial solution of this system is called an eigenfunction of the problem with
an eigenvalue 4. its general solution of an eigenvalue problem (which depends on
A) has the following
form:

1- If 2<0 then X(x) =ce'™ + fe V>

2- If 2=0 then X(x)=a + px

3- If 4>0 then X(x) = acos(/Ax) + Bsin('Ax)
where «, £ are arbitrary real numbers. The corresponding eigenfunctions are

Xﬂ):sin(@) ,z:(”l—”j n=123..

nrz

The general solution of second ODE has the form T (t)=B.e [ ' ) t, n=123,.
The superposition principle implies that any linear combination

u(x,t) :ansin(nTﬂx)ek(n'”) t :

of separated solutions is also a solution of the heat equation that satisfies the
Dirichlet boundary conditions.

From the initial condition we have f(x)=ianin(@) ,this is Fourier sine

n=1
series; Thus :its coefficient has the form Bn=|3joI f (x)sin(nl—”x)dx.

Ex: in the above example if k=1,|=7z,f(x)={ x Osxsmf2 then find u(xt).
T—X mwl2<x<rx
Ex: solve the following problems
1- u,—c’u, =0 0<x<Lt>0 2- r’u, +ru, +u, =0 0<r<b0<f<z
u(x,0) = f(x),u,(x,0)=g(x) 0<x<I u(r,0)=0,u(r,7z)=0 0<r<b

u,(0,t)=u (,t)=0, t=0 u(L,0)=0,u(b,f)=u, 0<O<rx



3-consider the displacement in a stretched string upon which an external force
per unit length acts, parallel to the y axis. Let that the force be proportional to the
distance from one end, and let the initial displacement and velocity be zero. Units
for x and t can be chosen.

4- let u(x,y,t)denote the transverse displacement at each point (x,y)at time t in a
membrane stretched across a rigid square frame in the xy-plane. We can select
the origin and the point (z,7) as the ends of the diagonal of the frame, and let that
the membrane is released at rest with a given initial displacement f (x,y) which is
continuous and vanishes on the boundary of the square.

Laplace transformation: Laplace transformation for the function u(x,t) with
respect to tis {u(x,t)}:j:u(x,t)e‘“dt=U(x,s), t>0

By using this definition ,we can found the Laplace transforms foru(x,t) derivatives
as;

{u,(x,t)}= j: u, (x,t)e*'dt = sU(x,s) — u(x,0,

{u,(x,t)}= '[Om u, (x,t)e"*'dt = s2U (x,s) — su(x,0) —u, (x,0),

Note: other derivatives in the PDE is transforms into ordinary differentional(e.g

* t X, 0 st U (x,
U, 0= [ u,(x e dt :W, UL (D} = [ ug (et :%

Example : Solve the following problem

u, —ku, =0 0<x<Ilt>0

u@,t)=u, t=>0
u(x,00=0, 0<x<Il and u(x,t) bounded,
Take Laplace transformation for both sides of PDE with respect to t,we

have dzlé)(()z(’ ) _ %{SU (x,8) —u(x,0)} = ?;(li —EU =0=U(x,8) = oz(s)exJE +B(s)e .

S

From u(x,t) must be bounded = a(s)=0 ,thus; U(x,s):,B(s)e_X k

Furthermore, since u(0,t) =u,,we have  U(0,s) =I:u0e‘3tdt=u?°. So, U(0,s) = A(s)

Solution of ODE is U(x,s) =u—S°ex‘fk , by taking inverse Laplace transformation we

S
_x |2
k x/2~/kt

e X
have,  u(xt)=u, — =, erfc(z—\/k_t):uo(l—'[

0

e”da) (erfc=1-erf)



Ex: Solve the following problem
u +u,=x (x,t>0)
u(x,00=0,x>0
u(0,t)=0,t >0
Ex:If u,=u,+u, (xt>0),and the following data
u(x,00=0, u(0,t)=1, and u(x,t)—>0 as x— oo are satisfying, then

u, (0,t) :—ie‘t.

Jt

Fourier transformation: By using this definition of the complex form of the
Fourier series, we can obtain Fourier transformation. Therefore, The Fourier

transformation for the function u(x,t) with respect to x is given by

Flu(x,t)}= %ﬁou(x,t)e“pxdx =U(p,t)

And the inverse has the form u(x,t) = %Iw U(p,t)e"™dP
T —00

By using this definition ,we can found the Fourier sine transforms and Fourier
cosine transforms as;

F{u(x,t>}=ﬁ [ utx.t)sin(pxydx=U,(p,t)
T 0
And the inverse has the form u(x,t) = \/ijus(p,t)sin(px)dP
77 90
F{u(x,o}:ﬁ [ u(xt)cos(px)dx=U,(p.t)
V4 0

And the inverse has the form u(x,t) = \/Zruc(p,t)cos(px)dP
7 90

Also ,we can found the Fourier sine and cosine transforms for the derivatives as;

F{ux(x,t)}=g [ u, (. 0)sin(pxdx =~ pU, (p,1)

Flu,(x,t)}= \/gjowux(x,t)cos(px)dx = —\/%u (0,t) + pU,(p,t)

Flu (1)} = E [ ua O tysin(pxdx = p@u(o,t)— p°U,(p,1)

Flue(x )= \/zruxx (x,t) cos(px)dx = —\/ZUX(OJ) - p°Uc(p.1)
70 T
Note: other derivatives in the PDE is transforms into ordinary differential (e.g



F{ut(x,t)}zw’ F{un(x,t)}zww.
F{ut(x,t)}zw, F{utt (x,t)}:%,m

Ex: solve the following problem

u —ku, =0 0<x<I,t>0
u(x,00=0 x>0
u(it)=a, t>0
u&u, >0, XxX—oo,
Non-linear model of P.D.Es:





